Philips Stereo Amplifier TDA8542 User Manual

INTEGRATED CIRCUITS  
DATA SHEET  
TDA8542  
2 × 1 W BTL audio amplifier  
1998 Apr 01  
Product specification  
Supersedes data of 1997 Feb 19  
File under Integrated Circuits, IC01  
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
BLOCK DIAGRAM  
V
V
CCL CCR  
16  
9
15  
14  
OUTL  
INL−  
+
13  
INL+  
R
V
CCL  
R
+
2
20 kΩ  
OUTL+  
20 kΩ  
STANDBY/MUTE LOGIC  
TDA8542  
10  
11  
INR−  
OUTR−  
+
12  
INR+  
R
V
CCR  
R
+
7
20 kΩ  
OUTR+  
4
SVR  
20 kΩ  
3
MODE  
STANDBY/MUTE LOGIC  
5
BTL/SE  
1
8
MGB975  
LGND RGND  
Fig.1 Block diagram.  
3
1998 Apr 01  
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
PINNING  
FUNCTIONAL DESCRIPTION  
The TDA8542(T) is a 2 × 1 W BTL audio power amplifier  
capable of delivering 2 × 1 W output power to an 8 load  
at THD = 10% using a 5 V power supply. Using the MODE  
pin the device can be switched to standby and mute  
condition. The device is protected by an internal thermal  
shutdown protection mechanism. The gain can be set  
within a range from 6 dB to 30 dB by external feedback  
resistors.  
SYMBOL  
LGND  
PIN  
DESCRIPTION  
ground, left channel  
1
2
OUTL+  
MODE  
SVR  
positive loudspeaker terminal,  
left channel  
3
4
5
operating mode select (standby,  
mute, operating)  
half supply voltage, decoupling  
ripple rejection  
Power amplifier  
BTL/SE  
BTL loudspeaker or SE  
headphone operation  
The power amplifier is a Bridge Tied Load (BTL) amplifier  
with a complementary PNP-NPN output stage.  
The voltage loss on the positive supply line is the  
saturation voltage of a PNP power transistor, on the  
negative side the saturation voltage of a NPN power  
transistor. The total voltage loss is <1 V and with a 5 V  
supply voltage and an 8 loudspeaker an output power of  
1 W can be delivered.  
n.c.  
6
7
not connected  
OUTR+  
positive loudspeaker terminal,  
right channel  
RGND  
VCCR  
8
9
ground, right channel  
supply voltage, right channel  
OUTR−  
10 negative loudspeaker terminal,  
right channel  
Mode select pin  
INR−  
INR+  
INL+  
11 negative input, right channel  
12 positive input, right channel  
13 positive input, left channel  
14 negative input, left channel  
The device is in the standby mode (with a very low current  
consumption) if the voltage at the MODE pin is  
>(VCC 0.5 V), or if this pin is floating. At a MODE voltage  
level of less than 0.5 V the amplifier is fully operational.  
In the range between 1.5 V and VCC 1.5 V the amplifier  
is in mute condition. The mute condition is useful to  
suppress plop noise at the output caused by charging of  
the input capacitor.  
INL−  
OUTL−  
15 negative loudspeaker terminal,  
left channel  
VCCL  
16 supply voltage, left channel  
Headphone connection  
A headphone can be connected to the amplifier using two  
coupling capacitors for each channel. The common  
GND pin of the headphone is connected to the ground of  
the amplifier (see Fig.13). In this case the BTL/SE pin must  
be either on a logic HIGH level or not connected at all.  
handbook, halfpage  
LGND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CCL  
OUTL+  
MODE  
SVR  
OUTL−  
INL−  
The two coupling capacitors can be omitted if it is allowed  
to connect the common GND pin of the headphone jack  
not to ground, but to a voltage level of 12VCC (see Fig.13).  
In this case the BTL/SE pin must be either on a logic LOW  
level or connected to ground. If the BTL/SE pin is on a  
LOW level, the power amplifier for the positive  
INL+  
TDA8542  
BTL/SE  
n.c.  
INR+  
INR−  
OUTR+  
OUTR−  
loudspeaker terminal is always in mute condition.  
RGND  
V
CCR  
MGB974  
Fig.2 Pin configuration.  
1998 Apr 01  
4
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
operating  
MIN.  
0.3  
0.3  
55  
40  
MAX.  
UNIT  
VCC  
VI  
+18  
VCC + 0.3  
1
V
input voltage  
V
IORM  
Tstg  
Tamb  
Vpsc  
Ptot  
repetitive peak output current  
storage temperature  
A
non-operating  
+150  
+85  
10  
°C  
°C  
V
operating ambient temperature  
AC and DC short-circuit safe voltage  
total power dissipation  
SO16L  
DIP16  
1.2  
W
W
2.2  
QUALITY SPECIFICATION  
In accordance with “SNW-FQ-611-E”. The number of the quality specification can be found in the “Quality Reference  
Handbook”. The handbook can be ordered using the code 9397 750 00192.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
VALUE  
UNIT  
Rth j-a  
thermal resistance from junction to ambient in free air:  
TDA8542T (SO16L)  
100  
55  
K/W  
K/W  
TDA8542 (DIP16)  
1998 Apr 01  
5
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
DC CHARACTERISTICS  
VCC = 5 V; Tamb = 25 °C; RL = 8 ; VMODE = 0 V; measured in test circuit Fig.3; unless otherwise specified.  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
2.2  
TYP.  
MAX.  
18  
UNIT  
operating  
5
V
Iq  
quiescent current  
standby current  
DC output voltage  
RL = ; note 1  
VMODE = VCC  
note 2  
0
15  
2.2  
22  
10  
50  
500  
0.5  
mA  
µA  
V
Istb  
VO  
VOUT+ VOUTdifferential output voltage offset  
mV  
nA  
V
IIN+, IIN−  
input bias current  
VMODE  
input voltage mode select  
operating  
mute  
1.5  
VCC 1.5 V  
standby  
VCC 0.5 −  
VCC  
20  
V
IMODE  
VBS  
input current mode select  
input voltage BTL/SE pin  
0 < VMODE < VCC  
single-ended  
BTL  
0
µA  
V
0.6  
2
VCC  
100  
V
IBS  
input current BTL/SE pin  
VBS = 0  
µA  
Notes  
1. With a load connected at the outputs the quiescent current will increase, the maximum of this increase being equal  
to the DC output offset voltage divided by RL.  
2. The DC output voltage with respect to ground is approximately 0.5 × VCC  
.
1998 Apr 01  
6
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
AC CHARACTERISTICS  
V
CC = 5 V; Tamb = 25 °C; RL = 8 ; f = 1 kHz; VMODE = 0 V; measured in test circuit Fig.3; unless otherwise specified.  
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT  
Po output power THD = 10% 1.2  
1
W
THD = 0.5%  
Po = 0.5 W  
note 1  
0.6  
0.9  
0.15  
100  
W
THD  
Gv  
total harmonic distortion  
closed loop voltage gain  
differential input impedance  
noise output voltage  
0.3  
30  
100  
200  
%
6
dB  
kΩ  
µV  
dB  
dB  
µV  
dB  
Zi  
50  
40  
Vno  
note 2  
note 3  
note 4  
note 5  
SVRR  
supply voltage ripple rejection  
Vo  
output voltage in mute condition  
channel separation  
αcs  
40  
Notes  
1. Gain of the amplifier is 2 × R2/R1 in test circuit of Fig.3.  
2. The noise output voltage is measured at the output in a frequency range from 20 Hz to 20 kHz (unweighted), with a  
source impedance of RS = 0 at the input.  
3. Supply voltage ripple rejection is measured at the output, with a source impedance of RS = 0 at the input.  
The ripple voltage is a sine wave with a frequency of 1 kHz and an amplitude of 100 mV (RMS), which is applied to  
the positive supply rail.  
4. Supply voltage ripple rejection is measured at the output, with a source impedance of RS = 0 at the input.  
The ripple voltage is a sine wave with a frequency between 100 Hz and 20 kHz and an amplitude of 100 mV (RMS),  
which is applied to the positive supply rail.  
5. Output voltage in mute position is measured with a 1 V (RMS) input voltage in a bandwidth of 20 kHz, so including  
noise.  
1998 Apr 01  
7
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
TEST AND APPLICATION INFORMATION  
Test conditions  
SE application  
Tamb = 25°C if not specially mentioned, VCC = 7.5 V,  
f = 1 kHz, RL = 4 , Gv = 20 dB, audio band-pass  
22 Hz to 22 kHz.  
Because the application can be either Bridge-Tied Load  
(BTL) or Single-Ended (SE), the curves of each application  
are shown separately.  
The SE application diagram is illustrated in Fig.14.  
If the BTL/SE pin (pin 5) is connected to ground, the  
positive outputs (pins 2 and 7) will be in mute condition  
with a DC level of 12VCC. When a headphone is used  
(RL 25 Ω) the SE headphone application can be used  
without output coupling capacitors; load between negative  
output and one of the positive outputs (e.g. pin 2) as  
common pin.  
The thermal resistance = 55 K/W for the DIP16; the  
maximum sine wave power dissipation for Tamb = 25 °C is:  
150 25  
= 2.3 W  
----------------------  
55  
For Tamb = 60 °C the maximum total power dissipation is:  
150 60  
= 1.7 W  
----------------------  
55  
Increasing the value of electrolytic capacitor C3 will result  
in a better channel separation. Because the positive output  
is not designed for high output current (2 × Io) at low load  
impedance (16 ), the SE application with output  
capacitors connected to ground is advised. The capacitor  
value of C4/C5 in combination with the load impedance  
determines the low frequency behaviour. The THD as a  
function of frequency was measured using a low-pass filter  
of 80 kHz. The value of capacitor C3 influences the  
behaviour of the SVRR at low frequencies, increasing the  
value of C3 increases the performance of the SVRR.  
BTL application  
Tamb = 25°C if not specially mentioned, VCC = 5 V,  
f = 1 kHz, RL = 8 , Gv = 20 dB, audio band-pass  
22 Hz to 22 kHz.  
The BTL application diagram is illustrated in Fig.3.  
The quiescent current has been measured without any  
load impedance. The total harmonic distortion as a  
function of frequency was measured with a low-pass filter  
of 80 kHz. The value of capacitor C3 influences the  
behaviour of the SVRR at low frequencies, increasing the  
value of C3 increases the performance of the SVRR.  
The figure of the mode select voltage (Vms) as a function  
of the supply voltage shows three areas; operating, mute  
and standby. It shows, that the DC-switching levels of the  
mute and standby respectively depends on the supply  
voltage level.  
General remark  
The frequency characteristic can be adapted by  
connecting a small capacitor across the feedback resistor.  
To improve the immunity of HF radiation in radio circuit  
applications, a small capacitor can be connected in  
parallel with the feedback resistor (56 k); this creates a  
low-pass filter.  
1998 Apr 01  
8
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
BTL APPLICATION  
V
CC  
100 µF  
R2  
R1  
50 kΩ  
100 nF  
1 µF  
16  
9
+
INL  
14  
13  
+
OUTL  
15  
2
10 kΩ  
INL  
V
iL  
C3  
47 µF  
R
L
OUTL  
OUTR  
50 kΩ  
R4  
R3  
TDA8542  
1 µF  
+
INR  
11  
12  
10 kΩ  
OUTR  
INR  
10  
7
V
iR  
SVR  
R
L
4
3
5
+
MODE  
OUTR  
BTL/SE  
1
8
R2  
Gain left = 2 × -------  
R1  
GND  
MBH798  
R4  
R3  
Gain right = 2 × -------  
Fig.3 BTL application.  
MGD891  
MGD890  
10  
30  
handbook, halfpage  
handbook, halfpage  
I
q
THD  
(%)  
(mA)  
(2)  
(1)  
1
20  
1  
10  
10  
2  
10  
0
2  
1  
10  
10  
1
10  
0
4
8
12  
16  
V
20  
(V)  
P
(W)  
o
CC  
f = 1 kHz, Gv = 20 dB.  
(1) VCC = 5 V, RL = 8 .  
RI = .  
(2) VCC = 9 V, RL = 16 .  
Fig.4 Iq as a function of VCC  
.
Fig.5 THD as a function of Po.  
1998 Apr 01  
9
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
MGD892  
MGD893  
10  
60  
handbook, halfpage  
handbook, halfpage  
α
(dB)  
cs  
THD  
(%)  
(1)  
(2)  
70  
1
(1)  
(2)  
80  
(3)  
1  
10  
90  
2  
10  
100  
2
3
5
4
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
VCC = 5 V, Vo = 2 V, RL = 8 .  
(1) Gv = 30 dB.  
(2) Gv = 20 dB.  
Po = 0.5 W, Gv = 20 dB.  
(1) CC = 5 V, RL = 8 .  
(2) VCC = 9 V, RL = 16 .  
(3) Gv = 6 dB.  
V
Fig.7 Channel separation as a function of  
frequency.  
Fig.6 THD as a function of frequency.  
MGD895  
MGD894  
20  
2.5  
handbook, halfpage  
handbook, halfpage  
P
o
SVRR  
(dB)  
(W)  
2
40  
(1)  
(2)  
1.5  
1
(1)  
(2)  
(3)  
60  
0.5  
80  
0
0
2
3
4
5
10  
10  
10  
10  
10  
4
8
12  
f (Hz)  
V
(V)  
CC  
VCC = 5 V, Rs = 0 , Vr 100 mV.  
(1) Gv = 30 dB.  
(2) Gv = 20 dB.  
(1) THD = 10%, RL = 8 .  
(3) Gv = 6 dB.  
(2) THD = 10%, RL = 16 .  
Fig.8 SVRR as a function of frequency.  
Fig.9 Po as a function of VCC.  
1998 Apr 01  
10  
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
MGD897  
MGD896  
3
3
handbook, halfpage  
handbook, halfpage  
(1)  
(2)  
P
(W)  
P
(W)  
2
1
2
1
(1)  
(2)  
0
0
0
0
0.5  
1
1.5  
2
2.5  
4
8
12  
V
(V)  
P
(W)  
CC  
o
(1) RL = 8 .  
(2) RL = 16 .  
Sine wave of 1 kHz.  
(1) VCC = 9 V, RL = 16 .  
(2) VCC = 5 V, RL = 8 .  
Fig.10 Worst case power dissipation as a function  
of VCC  
.
Fig.11 Pdis as a function of Po.  
MGL070  
MGD898  
16  
10  
o
handbook, halfpage  
handbook, halfpage  
V
V
ms  
(V)  
1
(V)  
12  
1  
standby  
10  
2  
10  
8
4
(1)  
(2) (3)  
3  
10  
mute  
4  
10  
5  
10  
operating  
12 16  
6  
10  
0
0
1  
2
10  
1
10  
10  
4
8
V
(V)  
V
(V)  
ms  
P
Band-pass = 22 Hz to 22 kHz.  
(1) VCC = 3 V.  
(2) VCC = 5 V.  
(3) VCC = 12 V.  
Fig.13 Vms as a function of VP.  
Fig.12 Vo as a function of Vms  
.
1998 Apr 01  
11  
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
SE APPLICATION  
V
CC  
R2  
R1  
100 kΩ  
100 nF  
100 µF  
1 µF  
16  
9
+
INL  
14  
13  
C4  
10 kΩ  
OUTL  
INL  
15  
2
V
iL  
C3  
47 µF  
470 µF  
R
L
OUTR  
+
OUTL  
100 kΩ  
R4  
R3  
TDA8542  
1 µF  
+
INR  
11  
12  
4
10 kΩ  
INR  
C5  
V
iR  
OUTR  
10  
7
SVR  
470 µF  
R
L
+
MODE  
OUTR  
3
BTL/SE  
5
1
8
R2  
-------  
R1  
Gain left =  
GND  
MBH799  
R4  
-------  
R3  
Gain right =  
Fig.14 Single-ended application.  
MGD900  
MGD899  
10  
10  
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
THD  
(%)  
1
1
(1)  
(2)  
(3)  
1  
10  
(1)  
1  
10  
(2)  
(3)  
2  
10  
2  
10  
2
3
4
5
10  
10  
10  
10  
10  
2  
1  
10  
10  
1
10  
f (Hz)  
P
(W)  
o
f = 1 kHz, Gv = 20 dB.  
Po = 0.5 W, Gv = 20 dB.  
(1) VCC = 7.5 V, RL = 4 .  
(2) VCC = 9 V, RL = 8 .  
(3) VCC = 12 V, RL = 16 .  
(1) VCC = 7.5 V, RL = 4 .  
(2) VCC = 9 V, RL = 8 .  
(3) VCC = 12 V, RL = 16 .  
Fig.15 THD as a function of Po.  
Fig.16 THD as a function of frequency.  
1998 Apr 01  
12  
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
MGD901  
20  
handbook, halfpage  
MGD902  
20  
α
cs  
(dB)  
handbook, halfpage  
SVRR  
(dB)  
40  
(1)  
40  
60  
(2)  
(3)  
(1)  
(2)  
(4)  
(5)  
80  
60  
(3)  
100  
2
3
4
5
10  
10  
10  
10  
10  
80  
f (Hz)  
2
3
4
5
Vo = 1 V, Gv = 20 dB.  
(1) CC = 5 V, RL = 32 , to buffer.  
10  
10  
10  
10  
10  
f (Hz)  
V
(2) VCC = 7.5 V, RL = 4 .  
(3) VCC = 9 V, RL = 8 .  
(4) VCC = 12 V, RL = 16 Ω.  
(5) VCC = 5 V, RL = 32 .  
VCC = 7.5 V, RL = 4 ,Rs = 0 , Vr = 100 mV.  
(1) Gv = 24 dB.  
(2) Gv = 20 dB.  
(3) Gv = 0 dB.  
Fig.17 Channel separation as a function of  
frequency.  
Fig.18 SVRR as a function of frequency.  
MGD903  
MGD904  
2
handbook, halfpage  
3
handbook, halfpage  
P
o
(W)  
1.6  
P
(W)  
(1)  
(2)  
(3)  
2
(1)  
(2)  
(3)  
1.2  
0.8  
1
0.4  
0
0
0
0
4
8
12  
16  
4
8
12  
16  
V
(V)  
CC  
V
(V)  
CC  
(1) RL = 4 .  
(2) RL = 8 .  
(3) RL = 16 .  
THD = 10%.  
(1) RL = 4 .  
(2) RL = 8 .  
(3) RL = 16 .  
Fig.20 Worst case power dissipation as a function  
of VCC  
Fig.19 Po as a function of VCC  
.
.
1998 Apr 01  
13  
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
MGD905  
2.4  
handbook, halfpage  
P
(W)  
(1)  
1.6  
0.8  
(2)  
(3)  
0
0
0.4  
0.8  
1.2  
1.6  
P
(W)  
o
Sine wave of 1 kHz.  
(1) CC = 12 V, RL = 16 .  
V
(2) VCC = 7.5 V, RL = 4 .  
(3) VCC = 9 V, RL = 8 .  
Fig.21 Power dissipation as a function of Po.  
1998 Apr 01  
14  
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
a. Top view.  
+
V
GND  
CC  
100 µF  
+
OUT1  
OUT1  
12 kΩ  
100 nF  
12 kΩ  
56 kΩ  
IN1  
1
16  
1 µF  
MODE  
B/S  
P3  
11 kΩ  
TDA8542  
11 kΩ  
47 µF  
1 µF  
8
9
56 kΩ  
IN2  
+
OUT2  
OUT2  
MBH921  
b. Component side.  
Fig.22 Printed-circuit board layout (BTL and SE).  
15  
1998 Apr 01  
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
PACKAGE OUTLINES  
SO16: plastic small outline package; 16 leads; body width 7.5 mm  
SOT162-1  
D
E
A
X
c
H
v
M
A
E
y
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
e
w
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
10.5  
10.1  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
1.27  
0.050  
1.4  
0.25  
0.01  
0.25  
0.1  
0.25  
0.01  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.41  
0.014 0.009 0.40  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT162-1  
075E03  
MS-013AA  
1998 Apr 01  
16  
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
DIP16: plastic dual in-line package; 16 leads (300 mil); long body  
SOT38-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
(1)  
(1)  
1
2
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
max.  
max.  
min.  
max.  
1.40  
1.14  
0.53  
0.38  
0.32  
0.23  
21.8  
21.4  
6.48  
6.20  
3.9  
3.4  
8.25  
7.80  
9.5  
8.3  
4.7  
0.51  
3.7  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
2.2  
0.021  
0.015  
0.013  
0.009  
0.86  
0.84  
0.32  
0.31  
0.055  
0.045  
0.26  
0.24  
0.15  
0.13  
0.37  
0.33  
inches  
0.19  
0.020  
0.15  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-10-02  
95-01-19  
SOT38-1  
050G09  
MO-001AE  
1998 Apr 01  
17  
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
Several techniques exist for reflowing; for example,  
SOLDERING  
Introduction  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
DIP  
SOLDERING BY DIPPING OR BY WAVE  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
SO  
REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
1998 Apr 01  
18  
 
Philips Semiconductors  
Product specification  
2 × 1 W BTL audio amplifier  
TDA8542  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1998 Apr 01  
19  
 
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Middle East: see Italy  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Fax. +43 160 101 1210  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
Norway: Box 1, Manglerud 0612, OSLO,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belgium: see The Netherlands  
Pakistan: see Singapore  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Portugal: see Spain  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Romania: see Italy  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Colombia: see South America  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Slovakia: see Austria  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
Slovenia: see Italy  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Uruguay: see South America  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
For all other countries apply to: Philips Semiconductors,  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1998  
SCA59  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
545102/00/05/pp20  
Date of release: 1998 Apr 01  
Document order number: 9397 750 03353  
 

Peavey Musical Instrument Amplifier Session 400 User Manual
Pharos Science Applications Plumbing Product DL 40 User Manual
Philips Stereo Receiver LTC 2600 User Manual
Philips Washer 12NC User Manual
Porter Cable Paint Sprayer PSH2 User Manual
Poulan Blower EBV 210 User Manual
Prince Castle Beverage Dispenser 404 SL User Manual
Printronix Printer MVP Series User Manual
ProForm Treadmill PFTL79101 User Manual
PVI Industries Water Heater Polymer Lined Storage Tank User Manual